Here we list some publications that have used CosmoLattice. If you have used it in your research and your paper does not appear here, please let us know and we will gladly include it!

Last update: September 5th, 2025

List of papers:

  1. Enhancement of first-order phase transitions through a mass-acquiring scalar field.
    Yuan-Jie Li, Jing Liu, Zong-Kuan Guo
    arXiv: 2508.14665

  2. Preheating and gravitational waves in large-field hilltop inflation.
    Diganta Das, Shreyas Revankar
    arXiv: 2508.07442

  3. (Non-)Perturbative Dynamics of a Light QCD Axion: Dark Matter and the Strong CP Problem.
    Raymond T. Co, Taegyu Lee, Owen P. Leonard
    arXiv: 2508.00979

  4. Equation of state during (p)reheating with trilinear interactions.
    Stefan Antusch, Kenneth Marschall, Francisco Torrenti.
    arXiv: 2507.13465

  5. Self-Tracking Solutions for Asymptotic Scalar Fields.
    Martin Mosny, Joseph P. Conlon, Edmund J. Copeland.
    arXiv: 2507.04161

  6. Relativistic Axion with Nonrelativistic Momenta: A Robust Bound on Minimal ALP Dark Matter.
    Yuma Narita, Wen Yin.
    arXiv: 2507.03157

  7. Kinetic Fragmentation of the QCD Axion on the Lattice.
    Matteo Fasiello, Joanes Lizarraga, Alexandros Papageorgiou, Ander Urio.
    arXiv: 2507.01822

  8. Testing Nambu-Goto approximation of cosmic string by lattice field simulations.
    Zizhuo Zhao, Ligong Bian, Jing Shu.
    arXiv: 2507.00685

  9. Comparative study of the strong backreaction regime in axion inflation: the effect of the potential.
    Joanes Lizarraga, Carmelo López-Mediavilla, Ander Urio.
    arXiv: 2505.19950

  10. Numerical simulations on First-order phase transition through thermal fluctuation.
    Ligong Bian, Yuefeng Di, Yongtao Jia, Yang Li, Kehao Zeng.
    arXiv: 2505.15360

  11. Biased domain walls: faster annihilation, weaker gravitational waves.
    E. Babichev, I. Dankovsky, D. Gorbunov, S. Ramazanov, A. Vikman.
    arXiv: 2504.07902

  12. The Spectrum of Gravitational Waves from Annihilating Domain Walls.
    Alessio Notari, Fabrizio Rompineve, Francisco Torrenti.
    JCAP 07 (2025) 049. arXiv: 2504.03636

  13. Scalar Field Fluctuations and the Production of Dark Matter.
    Marcos A.G. Garcia, Wenqi Ke, Yann Mambrini, Keith A. Olive, Sarunas Verner.
    JCAP 08 (2025) 039. arXiv: 2502.20471

  14. Dynamics of Z_N domain walls with bias directions.
    Yuan-Jie Li, Jing Liu, Zong-Kuan Guo.
    arXiv: 2502.13644

  15. Higgs-Induced Gravitational Waves: the Interplay of Non-Minimal Couplings, Kination and Top Quark Mass.
    Giorgio Laverda, Javier Rubio.
    JHEP 08 (2025) 203. arXiv: 2502.04445

  16. A universal bound on the duration of a kination era.
    Cem Eröncel, Yann Gouttenoire, Ryosuke Sato, Géraldine Servant, Peera Simakachorn.
    Phys.Rev.Lett. 135 (2025) 10, 101002. arXiv: 2501.17226

  17. Ephemeral Oscillons in Scalar-Tensor Theories: The Higgs-like case.
    Matteo Piani, Javier Rubio, Francisco Torrenti.
    JCAP 06 (2025) 024. arXiv: 2501.14869

  18. Inflaton Self Resonance, Oscillons, and Gravitational Waves in Small Field Polynomial Inflation.
    Manuel Drees and Chenhuan Wang.
    JCAP 04 (2025) 078. arXiv: 2501.13811

  19. Non-Scaling Topological Defects and Gravitational Waves in Higgs Portal.
    Wen Yin.
    arXiv: 2412.19798

  20. Potential Surge Preheating: enhanced resonance from potential features.
    Pankaj Saha, Yuko Urakawa.
    JCAP 04 (2025) 061. arXiv: 2412.17359

  21. Feebly-Interacting Peccei-Quinn Model.
    Wen Yin.
    arXiv: 2412.17802

  22. The Origin Symphony: Probing Baryogenesis with Gravitational Waves.
    Yanou Cui, Anish Ghoshal, Pankaj Saha, Evangelos I. Sfakianakis.
    arXiv: 2412.12287

  23. Cosmological simulation of axion-Higgs strings: Gravitational waves and dark matter.
    Yongtao Jia, Ligong Bian.
    Phys.Rev.D 111 (2025) 6, 063552. arXiv: 2412.04218

  24. The non-linear dynamics of axion inflation: a detailed lattice study.
    Daniel G. Figueroa, Joanes Lizarraga, Nicolás Loayza, Ander Urio, Jon Urrestilla.
    Phys.Rev.D 111 (2025) 6, 063545 . arXiv: 2411.16368

  25. Numerical analysis of melting domain walls and their gravitational waves.
    I. Dankovsky, S. Ramazanov, E. Babichev, D. Gorbunov, A. Vikman
    JCAP 02 (2025) 064. arXiv: 2410.21971

  26. Hubble-Induced Phase Transitions: Gravitational-Wave Imprint of Ricci Reheating from Lattice Simulations.
    Dario Bettoni, Giorgio Laverda, Asier Lopez Eiguren, Javier Rubio.
    JCAP 03 (2025) 027. arXiv: 2409.15450

  27. Nonminimal Superheavy Dark Matter.
    Sarunas Verner.
    JCAP 05 (2025) 060. arXiv: 2408.11889

  28. Particle and gravitational wave emission by local string loops: Lattice calculation.
    Jorge Baeza-Ballesteros, Edmund J. Copeland, Daniel G. Figueroa, Joanes Lizarraga.
    Phys.Rev.D 112 (2025) 4, 043540. arXiv: 2408.02364

  29. Tachyonic production of dark relics: classical lattice vs. quantum 2PI in Hartree truncation.
    Kimmo Kainulainen, Sami Nurmi, Olli Väisänen.
    JHEP 10 (2024) 009. arXiv: 2406.17468

  30. Revisiting evolution of domain walls and their gravitational radiation with CosmoLattice.
    I. Dankovsky, E. Babichev, D. Gorbunov, S. Ramazanov, A. Vikman.
    JCAP 09 (2024) 047. arXiv: 2406.17053

  31. Primordial black hole formation from self-resonant preheating?.
    Guillermo Ballesteros, Joaquim Iguaz Juan, Paquale D. Serpico, Marco Taoso.
    Phys.Rev.D 111 (2025) 8, 083521. arXiv: 2406.09122

  32. Self-resonance during preheating: The case of α-attractor models.
    Daniel del-Corral.
    Annals Phys. 470 (2024) 169824. arXiv: 2406.04017

  33. Geometric reheating of the Universe.
    Daniel G. Figueroa, Nicolas Loayza.
    JCAP 03 (2025) 073. arXiv: 2406.02689

  34. Formation and decay of oscillons after inflation in the presence of an external coupling, Part I: Lattice simulations.
    Mohammed Shafi, Edmund J. Copeland, Rafid Mahbub, Swagat S. Mishra, Soumen Basak.
    JCAP 10 (2024) 082. arXiv: 2406.00108

  35. Preheating with deep learning.
    Jong-Hyun Yoon, Simon Cléry, Mathieu Gross, Yann Mambrini.
    JCAP 08 (2024) 031. arXiv: 2405.08901

  36. Ricci Reheating on the Lattice.
    Daniel G. Figueroa, Toby Opferkuch, Ben A. Stefanek.
    arXiv: 2404.17654

  37. Gravitational wave signatures of post-fragmentation reheating.
    Marcos A.G. Garcia, Mathias Pierre.
    JCAP 09 (2024) 054. arXiv: 2404.16932

  38. Gravitational Wave Probe of Gravitational Dark Matter from Preheating.
    Ruopeng Zhang, Sibo Zheng.
    JCAP 11 (2024) 007. arXiv: 2403.09089

  39. Impact of Dark Sector Preheating on CMB Observables.
    Marcos A.G. Garcia, Aline Pereyra-Flores.
    JCAP 08 (2024) 043 . arXiv: 2403.04848

  40. The Rise and Fall of the Standard-Model Higgs: Electroweak Vacuum Stability during Kination.
    Giorgio Laverda, Javier Rubio.
    JHEP 05 (2024) 339. arXiv: 2402.06000

  41. Collapsing Domain Wall Networks: Impact on Pulsar Timing Arrays and Primordial Black Holes.
    Ricardo Z. Ferreira, Alessio Notari, Oriol Pujolàs, Fabrizio Rompineve.
    JCAP 06 (2024) 020. arXiv: 2401.14331

  42. Present and future of CosmoLattice.
    Daniel G. Figueroa, Adrien Florio, Francisco Torrenti.
    Rept.Prog.Phys. 87 (2024) 9, 094901. arXiv: 2312.15056

  43. Phenomenology of Spillway Preheating: Equation of State and Gravitational Waves.
    Gareth Mansfield, JiJi Fan, Qianshu Lu.
    Phys.Rev.D 110 (2024) 2, 023542. arXiv: 2312.03072

  44. Gravitational Dark Matter from Minimal Preheating.
    Ruopeng Zhang and Sibo Zheng.
    JHEP 02 (2024) 061. arXiv: 2311.14273

  45. Cosmic Simulations of Axion String-Wall Networks: Probing Dark Matter and Gravitational Waves for Discovery.
    Yang Li, Ligong Bian, Rong-Gen Cai, Jing Shu.
    arXiv: 2311.02011

  46. Gravitational Wave Symphony from Oscillating Spectator Scalar Fields.
    Yanoi Cui, Pankaj Saha, Evangelos I. Sfakianakis.
    Phys.Rev.Lett. 133 (2024) 2, 021004. arXiv: 2310.13060

  47. Effects of Fragmentation on Post-Inflationary Reheating.
    Marcos A.G. Garcia, Mathieu Gross, Yann Mambrini, Keith A. Olive, Mathias Pierre, Jong-Hyun Yoon.
    JCAP 12 (2023) 028. arXiv: 2308.16231

  48. Gravitational Wave Emission from a Cosmic String Loop, I: Global Case.
    Jorge Baeza-Ballesteros, Edmund J. Copeland, Daniel G. Figueroa, Joanes Lizarraga.
    Phys.Rev.D 110 (2024) 4, 043522. arXiv: 2308.08456

  49. Ricci Reheating Reloaded.
    Giorgio Laverda, Javier Rubio.
    JCAP 03 (2024) 033 arXiv: 2307.03774

  50. Reheating after Inflaton Fragmentation.
    Marcos A. G. Garcia, Mathias Pierre.
    JCAP 11 (2023) 004. arXiv: 2306.08038

  51. On unitarity in Higgs-like inflation.
    Oleg Lebedev, Yann Mambrini, Jong-Hyun Yoon.
    JCAP 08 (2023) 009. arXiv: 2305.05682

  52. Gravitational freeze-in dark matter from Higgs Preheating.
    Ruopeng Zhang, Zixuan Xu, Sibo Zheng.
    JCAP 07 (2023) 048. arXiv: 2305.02568

  53. Dissipative Emergence of Inflation from Quasi-Cyclic Universe.
    Hiroki Matsui, Alexandros Papageorgiou, Fuminobu Takahashi, Takahiro Terada.
    Phys.Rev.D 109 (2024) 10, 103523. arXiv: 2305.02367

  54. Dissipative genesis of the inflationary Universe.
    Hiroki Matsui, Alexandros Papageorgiou, Fuminobu Takahashi, Takahiro Terada.
    Phys.Rev.D 109 (2024) 10, L101303. arXiv: 2305.02366

  55. Preheating in Einstein-Cartan Higgs Inflation: oscillon formation.
    Matteo Piani, Javier Rubio.
    JCAP 12 (2023) 002. arXiv: 2304.13056

  56. Numerical simulation of domain wall and first-order phase transition in an expanding universe.
    Yang Li, Yongtao Jia, Ligong Bian.
    JCAP 02 (2025) 038. arXiv: 2304.05220

  57. The strong backreaction regime in axion inflation.
    Daniel G. Figueroa, Joanes Lizarraga, Ander Urio, Jon Urrestilla.
    Phys.Rev.Lett. 131 (2023) 15, 151003. arXiv: 2303.17436

  58. Oscillon formation from preheating in asymmetric inflationary potentials.
    Rafid Mahbub, Swagat S. Mishra.
    Phys.Rev.D 108 (2023) 6, 063524. arXiv: 2303.07503

  59. Dark matter production via a non-minimal coupling to gravity.
    Oleg Lebedev, Timofey Solomko, Jong-Hyun Yoon.
    JCAP 02 (2023) 035. arXiv: 2211.11773

  60. One μ to rule them all: CMB spectral distortions can probe domain walls, cosmic strings and low scale phase transitions.
    Nicklas Ramberg, Wolfram Ratzinger, Pedro Schwaller.
    JCAP 02 (2023) 039. arXiv: 2209.14313

  61. Gravitational wave production from preheating with trilinear interactions.
    Catarina Cosme, Daniel G. Figueroa, Nicolas Loayza.
    JCAP 05 (2023) 023. arXiv: 2206.14721

  62. Scalar Dark Matter Production from Preheating and Structure Formation Constraints.
    Marcos A.G. Garcia, Mathias Pierre, Sarunas Verner.
    Phys.Rev.D 107 (2023) 4, 043530. arXiv: 2206.08940

  63. Characterizing the post-inflationary reheating history, Part II: Multiple interacting daughter fields.
    Stefan Antusch, Kenneth Marschall, Francisco Torrenti.
    JCAP 02 (2023) 019. arXiv: 2206.06319

  64. On gravitational preheating.
    Oleg Lebedev, Jong-Hyun Yoon.
    JCAP 07 (2022) 07, 001. arXiv: 2203.15808

  65. Preheating in Palatini Higgs inflation on the lattice.
    Frédéric Dux, Adrien Florio, Juraj Klarić, Andrey Shkerin, Inar Timiryasov.
    JCAP 09 (2022) 015. arXiv: 2203.13286

  66. Stairway to Heaven" -- Spectroscopy of Particle Couplings with Gravitational Waves.
    Daniel G. Figueroa, Adrien Florio, Nicolas Loayza, Mauro Pieroni.
    Phys.Rev.D 106 (2022) 6, 063522. arXiv: 2202.05805

  67. Characterizing the post-inflationary reheating history, Part I: single daughter field with quadratic-quadratic interaction.
    Stefan Antusch, Daniel G. Figueroa, Kenneth Marschall, Francisco Torrenti.
    Phys.Rev.D 105 (2022) 4, 043532. arXiv: 2112.11280

  68. Lattice simulations of non-minimally coupled scalar fields in the Jordan frame.
    Daniel G. Figueroa, Adrien Florio, Toby Opferkuch, Ben A. Stefanek.
    SciPost Phys. 15 (2023) 3, 077. arXiv: 2112.08388

  69. Freeze-in from Preheating.
    Marcos A. G. Garcia, Kunio Kaneta, Yann Mambrini, Keith A. Olive, Sarunas Verner.
    JCAP 03 (2022) 03, 016. arXiv: 2109.13280

  70. CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe.
    Daniel G. Figueroa, Adrien Florio, Francisco Torrenti, Wessel Valkenburg.
    Comput.Phys.Commun. 283 (2023) 108586. arXiv: 2102.01031

  71. The art of simulating the early Universe -- Part I.
    Daniel G. Figueroa, Adrien Florio, Francisco Torrenti, Wessel Valkenburg.
    JCAP 04 (2021) 035. arXiv: 2006.15122

  72. Energy distribution and equation of state of the early Universe: matching the end of inflation and the onset of radiation domination.
    Stefan Antusch, Daniel G. Figueroa, Kenneth Marschall, Francisco Torrenti.
    Phys.Lett.B 811 (2020) 135888. arXiv: 2005.07563