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Abstract

This is a technical note about the dynamics of gravitational waves (GWs) sourced by U(1) charged com-
plex scalars and Abelian gauge fields in a lattice. All new features are implemented in the (updated) GW
module that forms part of CosmoLattice v1.2, which is publicly available in http://www.cosmolattice.net.
We recommend the reader to check out as well other technical notes available there.

Important Note: If the reader is not familiar with the concept of gravitational waves in a lattice, we
recommend them to read first our Technical Note II [1], for a more detailed introduction of the relevant
concepts.

1 Gravitational waves in the continuum

We assume the reader is familiar with the concept of gravitational waves (GWs) in the continuum. Nev-
ertheless, we review briefly the definition of GWs in a spatially-flat Friedman-Lemâıtre-Robertson-Walker
(FLRW) metric. This allows us to remind the reader of the strategy for numerically solving the GW dy-
namics and to introduce the field variables we need in an Abelian gauge theory. GWs are identified with
perturbations hij of the background metric which are transverse and traceless (TT), i.e.,

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , with ∂ihij = 0 and hii = 0 , (1)

where a is the scale factor, t represents coordinate time and xi are spatial coordinates, with latin ndices
running from 1 to 3. Throughout this note, summation is assumed over repeated indices, unless otherwise
stated. In a FLRW background, the dynamics of GWs are described by equations of motion of the form [2]

ḧij + 3Hḣij −
∇2

a2
hij =

2

m2
pa

2
ΠTT
ij , (2)

where ḣij = dhij/dt, H = ȧ/a is the Hubble rate, mp = 1/
√

8πG = 2.44 × 1018 GeV is the reduced
Planck mass and ΠTT

ij is the transverse-traceless (TT) part of the anisotropic tensor Πij . The conditions

∂iΠ
TT
ij = ΠTT

ii = 0 hold ∀x, t. Obtaining the TT part of a tensor is a non-local operation, and so is
computationally very expensive. Thus, instead of solving directly Eq. (2), we follow the procedure introduced
in Ref. [7]. In particular, we write the TT tensor perturbations as

hij(k, t) = Λij,kl(k̂)ukl(k, t) , (3)

where Λij,kl is a projection operator defined in Fourier space as

Λij,lm(k̂) ≡ Pil(k̂)Pjm(k̂)− 1

2
Pij(k̂)Plm(k̂) , with Pij(k) = δij − k̂ik̂j , k̂i = ki/k , (4)

2

http://www.cosmolattice.net


with k is the momentum. In Eq. (2) the functions uij(k, t) are the Fourier transform of the solution to

üij + 3Hu̇ij −
∇2

a2
uij =

2

m2
pa

2
Πeff
ij , (5)

where Πeff
ij is an effective anisotropic stress tensor that contains only those contributions from Πij which

have non-vanishing TT-projection.
Consider now a theory with one real singlet field and one complex scalar field charged under an Abelian

U(1) gauge symmetry, and the corresponding gauge boson. The action is

S = −
∫
d4x
√
−gL = −

∫
dx4√−g

{
1

2
∂µφ∂

µφ+ (Dµϕ)∗(Dµϕ) +
1

4
FµνF

µν + V (φ, |ϕ|)
}
, (6)

where L is the Lagrangian of the model, g = det(gµν) is the determinant of the metric and

φ ∈ R , ϕ =
1√
2

(φ1 + iφ2) ∈ C , with φ1, φ2 ∈ R . (7)

The U(1) gauge field stress tensor and gauge covariant derivative are defined as

Fµν = ∂µAν − ∂νAµ , and Dµϕ = ∂µϕ− igAQAAµϕ , (8)

where gA is the gauge coupling and QA is the U(1) charge of ϕ. From the Lagragian in Eq. (6), we can
write down the stress-energy tensor of the scalar and gauge fields.

Tµν ≡ − 2
√
g

δ(
√
gL)

δgµν
= gµνL − 2

δL
δgµν

= −gµν
(
gαβ

[
(Dαϕ)∗(Dβϕ) +

1

2
(∂αφ)(∂βφ)

]
+

1

4
gαδgβλ(FαβFδλ) + V (φ, ϕ)

)
+(∂µφ)(∂νφ) + [2Re{(Dµϕ)∗(Dνϕ)}+ gαβFµαFνβ ] . (9)

From here, one can determine with a bit of work [3] the effective source of Eq. (5), which contains only those
parts of Πij that do not vanish after TT-projecting, namely

Πeff
ij = ∂iφ ∂jφ+ 2Re{(Diϕ)∗ (Djϕ)} −

(
a−2αEiEj + a−2BiBj

)
, (10)

where Ei and Bi are the Abelian electric and magnetic fields, defined as

Ei ≡ F0i , and Bi ≡
1

2
εijkF

jk . (11)

2 Gravitational waves in CosmoLattice
In order to numerically study the dynamics of the fields, one needs to work with dimensionless quantities,
also known as program variables. In CosmoLattice they are defined as

φ̃a =
φa
f∗

, dη̃ = a−αω∗dt , dx̃i = ω∗dx
i , κi =

ki
ω∗

, Ãµ =
Aµ
ω∗

, (12)

where φa refers to any scalar field (real or complex), Aµ to a Abelian gauge field, and α, f∗ and ω∗ are
constants. The last two have dimensions of energy, whereas α is dimensionless. Their particular values
should be chosen based on the model that one wishes to simulate, see Ref. [5] for a detailed discussion. We
denote the time derivative with respect to program time by ′ = d/dη̃ and the gradient ∇̃i = d/dx̃i. The
source of gravitational waves is the transverse-traceless part ΠTT

ij of the anisotropic stress-energy tensor.
For the case of the u fields we can write down their source as the effective anisotropic tensor tensor,

Π̃eff
ij =

Πeff
ij

ω2
∗f

2
∗

= ∇̃iφ̃ ∇̃jφ̃+ 2Re{(D̃iϕ̃)∗ (D̃jϕ̃)} −
(
ω2
∗
f2
∗

)
[a−2αẼi Ẽj + a−2B̃i B̃j ] , (13)
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where Ẽi and B̃i are the Abelian electric and magnetic fields, in program units, defined as

Ẽi ≡
Ei
ω2
∗

and B̃i ≡
Bi
ω2
∗
. (14)

and D̃i = ∇̃i − igAQaÃi. In CosmoLattice, we define normalized ũ fields as

hij(k, t) = ΛL
ij,kl(k̂)ukl(k, t) =

(
f∗
mp

)2

ΛL
ij,kl(k̂)ũkl(k, t) , (15)

and their conjugate momentum as (πũ)ij = a3−αũ′ij . The lattice definition of ΛL
ij,kl depends on the particular

choice of the lattice momenta, see Ref. [1] for a detailed discussion. This allows to rewrite Eq. (5) as a system
of first order differential equations ũ′ij = aα−3(πũ)ij ,

(πũ)′ij = a1+α∇̃2ũij + 2a1+αΠ̃eff
ij ,

(16)

which can be solved using finite difference methods, see Ref. [6] for a description of the available algorithms in
CosmoLattice. The gravitational wave energy density power spectrum normalized by the critical energy can
then be computed in different ways, see Ref. [1,4] for a discussion of the options available in CosmoLattice.
By default, the Type I - Version 1 power spectrum is computed, in which the exact multiplicity of modes
per bin, #l, is counted and all modes are assigned the central k value for the bin,

ΩGW(ñ, t) =
1

ρc

m2
pk(l)

8π

δx

N5
#l

〈[
ḣij(ñ, t)

] [
ḣ∗ij(ñ, t)

]〉
R(l)

, (17)

where the different variables are defined in Ref. [1]. In program variables this is expressed as

ΩGW(ñ, t) =
1

ρ̃c

κ(l)

8πa2α

(
δx̃

N5

)(
f∗
mp

)2

#la
−2(3−α) 〈[Λij,kl(ñ)(πũ)kl(ñ, t)][Λij,mn(ñ)(πũ)mn(ñ, t)]∗〉R(l) . (18)

For completeness, we also quote the Type II - Version 1 power spectrum, in which the number of modes per
bin is approximated #l ≈ 4πl2. In this case, the normalized GW energy density power spectrum is defined
as

ΩGW(ñ, t) =
1

ρc

m2
pk

3(l)

8π2

δx3

N3

〈[
ḣij(ñ, t)

] [
ḣ∗ij(ñ, t)

]〉
R(l)

, (19)

and is expressed in program variables as

ΩGW(ñ, t) =
1

ρ̃c

κ3(l)

(8π2a2α)

(
δx̃

N

)3( f∗
mp

)2

a−2(3−α) 〈[Λij,kl(ñ)(πũ)kl(ñ, t)][Λij,mn(ñ)(πũ)mn(ñ, t)]∗〉R(l) . (20)

Important Note -. While the GW energy density spectrum at the time of production ΩGW is typically
normalized in an expanding universe by the critical energy density ρ̃c, in CosmoLattice we rather
normalize it by the total energy density of the matter field sector ρ̃tot (let it be composed of scalar fields
only, or scalar and gauge fields), independently of whether we simulate the dynamics in an expanding
background or in Minkowski. In the case of self-consistent expansion ρ̃tot = ρ̃c, and hence we recover
the standard definition. However, for a fixed-background expansion, if the user wishes to obtain the
spectrum normalized to the critical energy density, they should multiply the CosmoLattice output
(second column of spectra gws.txt) by the ratio ρ̃tot/ρ̃c.
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