

Simulating Non-minimally Coupled Scalars on the Lattice

Toby Opferkuch & Ben Stefanek

What are NMC Scalars good for?

 $\mathscr{L} \supset \xi R \phi^2 \propto \xi [H^2] \phi^2$

Dominates only in the very early Universe

What are NMC Scalars good for?

 $\mathscr{L} \supset \xi R \phi^2 \propto \xi [H^2] \phi^2$

Dominates only in the very early Universe

Inflation & reheating:

Higgs inflation & reheating

Bezrukov & Shaposhnikov 0710.3755 Bezrukov et al 0812.3622 Garcia-Bellido et al 0812.4624

$f(\phi)$ inflation & reheating

Watanabe & Komatsu gr-qc/0612120

f(R) inflation & reheating

De Felice & Tsujikawa 1002.4928

*This is by no means a exhaustive listing of the literature

Geometric preheating

Bassett & Liberati hep-ph/9709417

Ricci reheating

Figueroa & Byrnes 1604.03905 Opferkuch et al 1905.06823

NMC reheating

Series of papers by DeCross et al 1510.08553, 1610.08868 & 1610.08916

What are NMC Scalars good for?

 $\mathscr{L} \supset \xi R \phi^2 \propto \xi H^2 \phi^2$

Dominates only in the very early Universe

Inflation & reheating:

Higgs inflation & reheating

Bezrukov & Shaposhnikov 0710.3755 Bezrukov et al 0812.3622 Garcia-Bellido et al 0812.4624

$f(\phi)$ inflation & reheating

Watanabe & Komatsu gr-qc/0612120

f(R) inflation & reheating

De Felice & Tsujikawa 1002.4928

*This is by no means a exhaustive listing of the literature

<u>Example:</u>

Geometric preheating Bassett & Liberati hep-ph/9709417

Ricci reheating

Figueroa & Byrnes 1604.03905 Opferkuch et al 1905.06823

NMC reheating

Series of papers by DeCross et al 1510.08553, 1610.08868 & 1610.08916

The Ricci Curvature Scalar

In post-inflationary FRW universe*

 $R = -3(1 - 3w)H^2$

 $= \begin{cases} -12H^2, & \text{inflation } (w = -1) \\ -3H^2, & \text{matter domination } (w = 0) \\ 0, & \text{radiation domination } (w = 1/3) \\ 6H^2, & \text{kination domination } (w = 1) \end{cases}$

*For a single scalar dominating the energy density, recall also:

 $\rho \propto a^{-3(1+w)}$

The Ricci Curvature Scalar

In post-inflationary FRW universe*

 $R = -3(1 - 3w)H^2$

 $= \begin{cases} -12H^2, & \text{inflation } (w = -1) \\ -3H^2, & \text{matter domination } (w = 0) \\ 0, & \text{radiation domination } (w = 1/3) \\ 6H^2, & \text{kination domination } (w = 1) \end{cases}$

Two extremely interesting cases:

1. R changes sign if w > 1/3 after inflation \implies Ricci reheating

*For a single scalar dominating the energy density, recall also:

 $\rho \propto a^{-3(1+w)}$

The Ricci Curvature Scalar

In post-inflationary FRW universe*

 $R = -3(1 - 3w)H^2$

 $= \begin{cases} -12H^2, & \text{inflation } (w = -1) \\ -3H^2, & \text{matter domination } (w = 0) \\ 0, & \text{radiation domination } (w = 1/3) \\ 6H^2, & \text{kination domination } (w = 1) \end{cases}$

Two extremely interesting cases:

1. R changes sign if w > 1/3 after inflation \implies Ricci reheating

2. For an oscillatory post-inflationary inflaton potential \implies Geometric 1 $V_{\text{inf}}(\chi) = \frac{1}{2}m^2\chi^2 \implies R = -\frac{T}{m^2} \approx \frac{R_0}{4} \left(\frac{a_0}{a}\right)^3 \left[1 + 3\cos(2mt)\right]$

Δ

*For a single scalar dominating the energy density, recall also:

 $\rho \propto a^{-3(1+w)}$

Geometric Preheating

[Bassett & Liberati hep-ph/9709417]

Initial Conditions

1. Solve inflationary EOS for background evolution:

$$\ddot{\chi} + 3H\dot{\chi} + \frac{\partial V_{\text{inf}}}{\partial \chi} = 0$$
 where $V_{\text{inf}}(\chi) = \Lambda^4 \tanh^p\left(\frac{c\chi}{m_p}\right)$ and $p = 4,6$

2. Solve mode equations initialising each mode in Bunch-Davies:

Cosmology on the Lattice

System of equations:

$$\phi'' + (3 - \alpha)\frac{a'}{a}\phi' - \frac{\nabla^2 \phi}{a^{2(1-\alpha)}} + a^{2\alpha}\xi R\phi = -a^{2\alpha}\frac{\partial V}{\partial \phi}$$
$$\chi'' + (3 - \alpha)\frac{a'}{a}\chi' - \frac{\nabla^2 \chi}{a^{2(1-\alpha)}} = -a^{2\alpha}\frac{\partial V_{\text{inf}}}{\partial \chi}$$
$$\frac{a''}{a} + (1 - \alpha)\left(\frac{a'}{a}\right)^2 = \frac{a^{2\alpha}}{6}R$$

NMC spectator field

Inflaton

FRW Background evolution

with the Ricci scalar:

$$F(\phi) \equiv \frac{1}{1 + (6\xi - 1) \,\xi \langle \phi^2 \rangle / m_p^2}$$

$$R = \frac{F(\phi)}{m_p^2} \left[\left(6\xi - 1 \right) \left(\frac{1}{a^{2\alpha}} \langle \phi^2 \rangle - \frac{1}{a^2} \langle (\nabla \phi)^2 \rangle \right) - 6\xi \langle \phi V_{,\phi} \rangle + 4 \langle V + V_{\text{inf}} \rangle - \frac{1}{a^{2\alpha}} \langle \chi^2 \rangle + \frac{1}{a^2} \langle (\nabla \chi)^2 \rangle \right]$$

<u>BUT</u>: R depends on all fields and their conjugate momenta

Cosmology on the Lattice

System of equations:

$$\phi'' + (3 - \alpha)\frac{a'}{a}\phi' - \frac{\nabla^2 \phi}{a^{2(1-\alpha)}} + a^{2\alpha}\xi R\phi = -a^{2\alpha}\frac{\partial V}{\partial \phi}$$
$$\chi'' + (3 - \alpha)\frac{a'}{a}\chi' - \frac{\nabla^2 \chi}{a^{2(1-\alpha)}} = -a^{2\alpha}\frac{\partial V_{\text{inf}}}{\partial \chi}$$
$$\frac{a''}{a} + (1 - \alpha)\left(\frac{a'}{a}\right)^2 = \frac{a^{2\alpha}}{6}R$$

NMC spectator field

Inflaton

FRW Background evolution

with the Ricci scalar:

$$F(\phi) \equiv \frac{1}{1 + (6\xi - 1) \xi \langle \phi^2 \rangle / m_p^2}$$

$$R = \frac{F(\phi)}{m_p^2} \left[\left(6\xi - 1 \right) \left(\frac{1}{a^{2\alpha}} \langle \phi^2 \rangle - \frac{1}{a^2} \langle (\nabla \phi)^2 \rangle \right) - 6\xi \langle \phi V_{,\phi} \rangle + 4 \langle V + V_{\text{inf}} \rangle - \frac{1}{a^{2\alpha}} \langle \chi^2 \rangle + \frac{1}{a^2} \langle (\nabla \chi)^2 \rangle \right]$$

BUT: R depends on all fields and their conjugate momenta

Cannot use symplectic integrators \implies Implicit Runge-Kutta

Public Implementation in CosmoLattice

[Figueroa, Florio, Torrenti, and Valkenburg: 2006.15122]
 [Figueroa, Florio, <u>Opferkuch</u>, Stefanek: 2112.08388]
 [Figueroa, Florio, <u>Opferkuch</u>, Stefanek: To appear]

CosmoLattice NMC Inputs

Model file with NMC scalar (NMC_tan4.h):

14 namespace TempLat 15 16 //////// 17 // Model name and number of fields 18 19 20 // In the following class, we define the defining parameters of your model: 21 // number of fields of each species and the type of interactions. 22 23 struct ModelPars : public TempLat::DefaultModelPars { 24 static constexpr size t NScalars = 2; 25 // In this example, we only want 2 scalar fields. 26 static constexpr size t NPotTerms = 2; 27 // Only the inflaton has a potential 28 29 30 31 // All the numbers of fields are 0 by default, so we need only 32 // to specify that we want two scalar fields. 33 // See the model with gauge fields to have an example of how to turn 34 // them on and specify interactions. 35 typedef CouplingsManager<NScalars, 1, false, true> NonMinimalCouplings; // Non-minimal coupling to gravity of scalars, only the second scalar. 36 37 38 **1.** Declare which scalars in 39 }; 40

the theory are minimally versus non-minimally coupled

CosmoLattice NMC Inputs

Model file with NMC scalar (NMC_tan4.h):

14 namespace TempLat 15 16 17 // Model name and number of fields 18 19 20 // In the following class, we define the defining parameters of your model: 21 // number of fields of each species and the type of interactions. 22 23 struct ModelPars : public TempLat::DefaultModelPars { 24 static constexpr size t NScalars = 2; 25 // In this example, we only want 2 scalar fields. 26 static constexpr size t NPotTerms = 2; 27 // Only the inflaton has a potential 28 29 30 31 // All the numbers of fields are 0 by default, so we need only 32 // to specify that we want two scalar fields. 33 // See the model with gauge fields to have an example of how to turn 34 // them on and specify interactions. 35 typedef CouplingsManager<NScalars, 1, false, true> NonMinimalCouplings; // Non-minimal coupling to gravity of scalars, only the second scalar. 36 37 38 **1.** Declare which scalars in 39 }; 40

the theory are minimally versus non-minimally coupled

Input file with NMC scalar (<u>NMC_tan4.in</u>):

#Output

1

2	outputfile	=	./N128_	_lambdaNMC_	EXAMPLE	_RUN_
---	------------	---	---------	-------------	---------	-------

- 3
 4 #Evolution
- expansion = true
- 6 #evolver = RK3_4
- 7 evolver = RK2
- 8
 9 #Lattice
- 9 = #Lattic
- $\begin{array}{ccc} 10 & 11 & -120 \\ 11 & dt = 0.005 \end{array}$
- 12 kIR = 0.07
- 13 nBinsSpectra = 200
- 14
- 15 #Times
 16 tOutputFreg = 0.05
- 17 tOutputInfreq = 0.1
- 18 tMax = 50.0
- 19 20 #IC

24

25

32

22

- 21 baseSeed = 2
- 22 #kCutOff = 8.0

```
23 ext_PS = none NMC_PS_tanh4_xi100_Nafter0p5_N512.txt
```

initial_amplitudes = 5.1319271451395456e17 0 # homogeneous amplitudes in GeV

```
initial_momenta = -1.1409463609139754e31 0  # homogeneous amplitudes in (GeV)^2
```

```
26
27 #Model Parameters
```

```
28 lambdaNMC = 0.0
```

```
29 xis = 100.0
```

```
31 #HDF5 Parameters
```

#energy_snapshot = E_S_G

*can be a list for multiple NMC scalar fields

3. (Optional) specify input

power spectrum at a = 1

CosmoLattice NMC Outputs

1. Output file for scale factor & R
(*_average_scale_factor.txt):

Prints columns:

 $\tilde{\eta}, a, a', \frac{a'}{a}, \mathbf{R}$

CosmoLattice NMC Outputs

1. Output file for scale factor & R
(*_average_scale_factor.txt):

Prints columns:

 $\tilde{\eta}, a, a', \frac{a'}{a}, R$

2. Output file for NMC scalar power spectrum (*_spectra_scalar_*.txt):

Prints columns:

 $\tilde{\eta}, \langle \tilde{\phi}_n \rangle, \langle \tilde{\phi}'_n \rangle, \langle \tilde{\phi}_n^2 \rangle, \langle \tilde{\phi}_n^{\prime 2} \rangle, \operatorname{rms}(\tilde{\phi}_n), \operatorname{rms}(\tilde{\phi}'_n)$

*Same as public version of CosmoLattice

CosmoLattice NMC Outputs

1. Output file for scale factor & R
(*_average_scale_factor.txt):

Prints columns:

 $\tilde{\eta}, a, a', \frac{a'}{a}, R$

2. Output file for NMC scalar power spectrum (*_spectra_scalar_*.txt):

Prints columns:

 $\tilde{\eta}, \langle \tilde{\phi}_n \rangle, \langle \tilde{\phi}'_n \rangle, \langle \tilde{\phi}_n^2 \rangle, \langle \tilde{\phi}_n^{\prime 2} \rangle, \operatorname{rms}(\tilde{\phi}_n), \operatorname{rms}(\tilde{\phi}'_n)$

*Same as public version of CosmoLattice

3. Output file for NMC scalar energy densities (*_average_energies.txt):

1	#t	E^kin_scal0	E^grad_scal0	E^kin_scal1	E^grad_scal1	Vpot_term_0	Vpot_te	rm_1 rhoNMC1	rhoNMC2	rhoNMC_total	E_tot
2	0	0.000872749168126935	7.09813849418279e-14	8.5577589824893e-10	1.79336702053732e-10	1.08959955044136e-	-05 0	2.22978105457287e-09	9.52814984974409e-08	9.75112795520138e-08	0.000883743710094483
3	0.	0.000831807815797041	7.02249495398859e-14	1.1937745446621e-09	2.48216087321145e-10	8.32829600122086	e-06 0	3.05518373182887e-09	1.31809305181943e-07	1.34864488913772e-07	0.000840272418348033
4	1	0.000793072042710684	7.23153977153007e-14	1.654520998259e-09	3.43112963181382e-10	6.27211398848689e-0	06 0	4.17682140757e-09 1.	B1505602776224e-07 1.	85682424183794e-07 0.	000799531836829632
5	1.	0.000756431880142924	7.62179625729894e-14	2.27886367624684e-0	9 4.73173712584143e-1	0 4.6447971964036	63e-06	5.69363354190712e-0	9 2.48762377064272e-0	2.54456010606179e-0	7 0.00076133388546354
6	2	0.000721780808355069	8.0687039591537e-14	3.11972125874824e-09	6.50496070579707e-10	3.37403413096903e-	-06 0	7.73516695139363e-09	3.39298057343018e-07	3.47033224294411e-07	0.000725505646008349
	ρ	$\chi(\eta) = \frac{1}{2a^{2a}}$	$\frac{1}{\alpha}\langle\chi^{2}\rangle + \frac{1}{2\alpha}$	$\frac{1}{a^2}\langle (\nabla \chi)^2 \rangle$	$+\langle V(\chi)\rangle$	$ ho_{\phi}$	(η) =	$=\frac{1}{2a^{2\alpha}}\langle\phi^{\prime 2}$	$\frac{1}{2a^2}\langle ($	$\nabla \phi$) ² > + ($V(\phi)\rangle$
		Inf	laton field	l (scal0)			+	$\frac{3\xi}{a^{2\alpha}}\mathcal{H}^2\langle\phi^2$	$\left 2 \right\rangle + \frac{6\xi}{a^{2\alpha}} \mathcal{H}$	$\langle \phi \phi' \rangle - \frac{\xi}{\beta}$	$\frac{1}{2}\langle \nabla^2 \phi^2 \rangle$

NMC spectator field (scal1)

9

Power Spectrum

Energy density

Reheating Viability

Back-reaction Results

Current/Future Directions

- Extend CosmoLattice to include GWs in the presence of a dominant NMC background
- Simulate the full NMC Higgs scenario (including all relevant SM fields)
- Study constraints on NMC Higgs in the presence of an oscillating inflaton

Bounded range of allowed ξ for the operator $\xi R |H|^2$