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Cosmological principle

Stress-energy tensor

Einstein

1
> GENERAL RELATIVITY: Ry = S R8u + 78 =87CTy | field egs.

GEOMETRY <« MATTER

» Cosmological Principle: the Universe is homogeneous and isotropic at large scales.

dr? '
GEOMETRY: | ds® =g, dxtdx* = —dr* + ;2(1‘) [l—rkz + r2(d6? + sin® 0d¢?) —> |H() = 4

7 \ ,
Scale factor - t FLRW metric Hubble
patial curvature parameter

Stress-energy tensor
of perfect fluid

\ p(t) : Energy density

characterized by 9 p(¢) : pressure density

MATTER: THY = (p -|—p)u'“u’/ -|—pg/“/

ut  :4-velocity; uut=-1——>» u"=(-1,0,0,0)

H comoving
observer
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) Friedmann equations

v, T =0

v

a
p’+3;(p+p)=0

» Friedmann equations (General relativity + cosmological principle):

<f2——p AL 4 L
a 3mi 3 a? a 6m]}p P 3

Conservation equation

1st Friedmann equation (not independent)

2nd Friedmann equation

m, = (8zG)~""
Note: We set fromnowon k= A =0

» Equation of state:

P a(t) « tﬁ ifw>—1 If w>-1/3:
w = — = const —> I 2
P a(t) « et if w=-1 7<0

» If w>-1/3, the universe decelerates. This is the case for SM particles, which can
be described as radiation (w=1/3) or matter (w=0).
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» A decelerating universe gives rise to the so-known “problems” of classical
cosmology:

) Horizon problem: TCMB — 272548 + 000057K

causally disconnected!

e Flatness problem: Q, = — k/(agHg) = —0.0106 £0.0065 <« 1

™~

but Q,~0 is point of
unstable equilibrium!

4 )

Inflation: An early stage of accelerated expansion of the universe.

d2
9.0 |e=—p|lw<-1/3
dr?

Inflation solves the horizon and flatness problems. It also generates primordial
fluctuations that allow the later structure formation.

. /

Refs: Starobinsky, Guth, Linde (1980-1982)
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Scalar field in a FLRW metric

Inflation can be sourced by the vacuum energy of a scalar field in “slow-roll”

> Action of a scalar field: ¢ = ¢, %)

S = Jd“x\/—_gszM — Ly = %aﬂqba”qb + V(¢) g = det(g,,)

> Stress-energy tensor: 1 1
Py = Top = 5¢2 + 5(V¢)2 + V()

2 6(\/—8Z,) 1
T, = = 0,000, — —8,,0,0°¢ P.fluid
\V —8 5g,m/ 2 \ 1 i 1 12 1 2

py=3 2T =5 - (Vo = V(@)

» Equation of motion: *

L1 q . N -
58 > ) . a Py a 1
o ’ a’ ’ a P+ < a > 3m2 | | a 6m? (Pg+ 3Py

Scalar field EOM
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gl Slow-roll inflation

» We need to achieve an accelerated universe (w<-1/3): ¢ = (1)

1 42
p — V(¢) .
We = (pﬁ =] e < |V(P)]

» This stage must take long enough, so the inflaton must not accelerate:

A3V ) =0 =P | F] <3H| V)

» These two conditions can be written in terms of slow-roll parameters:

P2 2 , 2
€ = o0 <1 evzmp<v(¢)> <1
2V(¢) 2 \ V(¢) € =€y
g g ~ o —
=—i<<1 =m2<w><<l Ty
LT ="\ Vi)

» Inflation ends when: ¢ ~¢, ~ 1
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Tensor-to-scalar ratio (79.002)

order) by the scalar tilt n; and tensor-to-scalar ratio r.

0.20

0.15

0.10

0.05

0.00

0.94

Planck (2018)

0.96
Primordial tilt (ns)

0.98

TT,TE,EE+lowE-+lensing

TT,TE,EE+lowE-+lensing
+BK14

TT,TE,EE+lowE+lensing
+BK14+BAO

Natural inflation
Hilltop quartic model
«v attractors
Power-law inflation
R? inflation

V x ¢?

V x ¢*/3

V xo

V o ¢?/3

Low scale SB SUSY
N,=50

N,=60

Slow-roll inflation generates an (almost) scale-invariant spectrum of scalar and
tensor perturbations.

Different V(@) give rise to small differences, which can be parametrized (at first

Monomial potentials are
ruled out by observations
of the CMB anisotropies

“Flat” potentials are
favoured
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History of the early universe

INITIAL
CONDITIONS:
Vacuum energy

(cold) ‘

2 . INFLATION ‘
: a>0
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History of the early universe

FINAL CONDITIONS:
Thermal equilibrium, T,

INITIAL
CONDITIONS:
Vacuum energy

. (cold)
? INFLATION ‘ REHEATING
: a>0 : a(t) ~ 1

‘. .1'*:'
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History of the early universe

FINAL CONDITIONS:
Thermal equilibrium, T,

INITIAL
CONDITIONS:
Vacuum energy

; (cold)
n :  INFLATION ‘ REHEATING BEN  HOTBIG BANG
- s 0 \ a(t) ~ 19 T ~ IMeV a(t) ~ t'?

‘. .1'*:'

Cosmo Lattice school, IFIC Valencia - 5th-8th September 2022 Francisco Torrenti 14



Non-linear dynamics of the early universe

‘/‘4::‘

» g — g(¢9 qﬂia l//j’A,u’ h/ﬂ/’ )??
A

» Details of the early universe evolution depends on the high-energy physics model.

» Non-linear, non-perturbative, non-equilibrium physics.
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Phase

< Transitions

History of the early universe

.
, o)
Ly z —> 9s.04,02%
/@
\\ k((l+1)') “
nku) \/ nk(l*) .
[ [

Particle 4
Production | !
THERMAL EPOCH

(cold) ;
INFLATION ‘ REHEATING

L

II I.I..Ii.I.l.l.II..I.I.I.l..I.I.I.I..I..Ii.II.I =
/ o /
/ - - e / )
/ g - /
iy el | !
/ e ST f P
. xN =

?
[24
HIGGS
>
Pot. Energy Max &
Cosmic
Defects
16
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Quantum
Overdensity Peak

Fluctuations
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Non-linear dynamics of the early universe

®
o ®
o ¥ L =L, 0 Ay s . ) ??

\A.

» Details of the early universe evolution depends on the high-energy physics model.

» Non-linear, non-perturbative, non-equilibrium physics.

» EXAMPLE: PREHEATING: field instabilities due to non-perturbative effects.

Classical regime:

n, ~ | X,|>>> 1 === (classical) LATTICE SIMULATIONS

» Lattice simulation can be used to study: Inflation, (p)reheating, GWs,
cosmic strings and other topological defects, phase transitions, oscillons,...
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Monomial inflaton potentials

e Monomial potentials are ruled out during inflation. However, many potentials
behave as a monomial around the minimum.

Example: alpha-attractor T-models
Kallosh & Linde, JCAP (2013)

3.x10°% r———— o
1 I
: \ !
25x107%" \ !
[ \ I monomial
\
-9[ 1 ' .
A4 10| ~ 2.x107 \ ! potential
Y 1
P M R ‘\
= 1.x107% \ !
: ) i —
* _10: “ ll M - 3Mp
4 5.x107 7 \ I,’
r \
V) =—— g1+ . SN S |
pMP 30 -20 -10 0 10 20 30
d(M)
[ J
other models.

Moreover, analytical treatment during the initial linear regime is easier than in
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Inflaton oscillations in monomial potentials

| 1
4
15 ] V(g) = Z/kb
—~ 10:_ Homogeneous
_ ] lution:
= f END OF solution
ol | INFLATION = p()
~ SLOW-ROLL INFLATON (b = )
. *
o1 05 1 5 10 50 100 o
(\/me)t
107 Power-law
’ expansion
INFLATON OSCILLATIONS: 107 (RD)
- ,
£\ 12 1012+
Amplitude: Ay = ¢ <—> f W = (Pylose — 1
* 105" Accelerated T (ppose 3
i r\ 2 f expansion
Frequency: Q_ .= 12¢- (7) 104! ]
) 01 05 1 5 10 50 100
Turner, PRD (1983) (\/me)t
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Inflaton oscillations in monomial potentials

Generic expressions for monomial potentials:

1
V(@) = ;/1/14_1’ "] p=2

— T~

INFLATON OSCILLATIONS: EQUATION OF STATE:
¢(t) = A(,b(t)F(t) _ <p¢>osc P — 2
%’-J = . Whom = = —
Decaying  Oscillatory (Pplosc P T2
amplitude function

[ 2 | 4-p P=2 t %_1
A¢(t) = ¢* <_> Qosc = ﬂTﬂTgb* ? <_>

I L

(Note: time-dependent

frequency except for p=2)
Turner, PRD (1983)
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Example: preheating in A¢p?

» We couple the inflaton to a massless “daughter” field.

1 1
V(g,X) = ZW + Eg%bzxz

@ inflaton
X daughter field

» Field equations:

S e
b=— V2 +3HP+ 1 + X =0

L PR+ VX))

a 2
a 3mg
X~ % VEX+3HX +¢°X*p =0 with initial (s, X) = i+ 5Pt X) o vacuum
a conditions: X(t:, X)) = 6X(ts, ?)4/ :\I::r::a::)sr;

of simulation

» We set the initial conditions at the end of inflation. The fluctuations are given by:

(6¢p*) = Jd logk Agy(k)
13 Psp(k) =
Bsgk) = P50 2a%wy

_ 2 2.2 —
a)k’qb:\/k +Clm¢ m¢=ﬁ
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Example: preheating in A¢p?

» The inflaton homogeneous mode goes as:

~1/2 —1
5 5 2
A1) = - <t_> xa! Q.. = - (7) xa! (@« = /A
this allows to define a set of dimensionless “natural variables” in which the
amplitude and oscillation frequency are constant.

conformal rescaling

> “Natural” variables for quartic potential: /j
1 1

Field amplitudes: ¢ = Ic@ ¥y =—aX

Time and space: = a)*[ a(r)~d V= W+« X
t

*

conformal time (up to dimensionful factor)
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pal Example: preheating in A
pie: p 9 P

» Field equations in natural variables:

a// y a/
¢”—V27»<0+<|<0I2+q12— ¢ =0 X —V%»)(+<Q(ﬂ2—]c{>)(=0
a
~ 2 ~ 2 "=d/du
RESONANCE _ 8_2 _> Depends on interaction strength
PARAMETER: 4= 7 between both fields

» LINEARIZED ANALYSIS: Expansion up to linear order in field amplitudes:

o(V,u) = pu) + 5p(V,u) + ...
2 (7, u) =8y (Y, u)+ ...

L} ZEROTHORDER: @'+ @’ ~(0 ==l =~ cn(u,1/2) = cos(0.85u)
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Example: preheating in A¢p?

| 5" — V%ﬁq) +3p*6p ~ 0
LINEAR ORDER:
oy’ — V%ﬁ){ + g’y ~ 0
Jd3?5f(?, e k¥

o1
i ) = s

| Inflaton: Sepy + CUk opr =0y, = \/l’22 +3¢° k
e Fluctuations k=
(linear regime) . > > W
Daughter field: | 5y, + a)k)(é)(k 0 &, = \/k +4q9
e )
2 2u.t :
= > | —> index resonant
Q) 2 2UK(CI)t 1 1 |
k,f )(kl ~ € excitation:

Field fluctuations get excited through a

L process of PARAMETRIC RESONANCE after inflation! y

Kofman, Linde, Starobinsky (1994,1997)
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Example: preheating in A¢p4

» Stability/instability charts:

Re [Vk}

e For daughter field:

[_0.25

-0.20

S + (K + qp*)5y ~ 0

* 1.5}

2 2u (u
| Y« "~ e (@) Inflaton
"self”-resonance

:-0.15
(q=3) - 1 b
-0.10

0.9}

e Forinflaton:

I ~ 0.05
5q;, + (k* + 3p*)d¢;, ~ 0

v 0.1 . | | , | my

. " 0 5 10 15 20 25
Narrow Broad resonance
resonance (g=1)
(q<1)

Cosmo Lattice school, IFIC Valencia - 5th-8th September 2022 Francisco Torrenti 25



Example: preheating in A4

The fluctuations of the daughter field
grow much faster than for the inflaton

» Variances: | ((6f)) =

2 2
o [dkk EA

SOLUTION NOT VALID
IN THIS REGIME
(non-linearities

become relevant)

-f=9
0.001|=f = x,q = 500

__107% :
T : daughter . o]
= 10 field inflgton

One needs to solve the

10—12 .
complete e.o.m in
(3+1)-D! (with lattice
1071 : : :
. . simulations)
1 5 10 50 100 500
u

Figure created by
Ken Marschall
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Thank you!



